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We study the statistics of the work done in a zero temperature quench of the coupling constant in the Dicke
model describing the interaction between an ensemble of two level systems and a single bosonic mode. When
either the final or the initial coupling constants approach the critical coupling �c that separates the normal and
superradiant phases of the system, the probability distribution of the work done displays singular behavior. The
average work tends to diverge as the initial coupling parameter is brought closer to the critical value �c. In
contrast, for quenches ending close to criticality, the distribution of work has finite moments but displays a
sequence of edge singularities. This contrasting behavior is related to the difference between the processes of
compression and expansion of a particle subject to a sudden change in its confining potential. We confirm this
by studying in detail the time-dependent statistics of other observables, such as the quadratures of the photons
and the total occupation of the bosonic modes.
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I. INTRODUCTION

The study of nonequilibrium phenomena in interacting
quantum systems is one of the most challenging problems of
modern statistical physics. The main reason is that several of
the conceptual tools developed to describe physical systems
in equilibrium �e.g., the partition function, mean field theory,
and the renormalization group� are not readily generalized to
nonequilibrium conditions. In order to make some progress,
in our understanding of nonequilibrium behavior, it is impor-
tant to identify simple paradigms of nonequilibrium pro-
cesses that may be studied both theoretically and experimen-
tally. Recently, some progress in this direction has been
made through the realization of nonequilibrium experiments
with cold atomic gases loaded in optical lattices �1–3�. To a
good degree of accuracy, these systems are well-described by
simple many-body models such as, for example, the Bose-
Hubbard model �4�.

The simplest nonequilibrium process among those pres-
ently under study is the quantum quench: an abrupt change
in time of one of the system parameters from an initial value
� to a final one ��. In a closed system, this process corre-
sponds to the preparation of the system in the ground state
�0�� of an initial Hamiltonian H���, which is then allowed to
evolve in time according to a final Hamiltonian H����. This
process is particularly interesting if some qualitative changes
in the state of the system occur between � and ��. This was
the case in Ref. �2�, where a gas of bosonic atoms was taken
abruptly across a quantum critical point from the superfluid
to the Mott insulating region of the phase diagram. The ob-
servation of intriguing many-body collapse and revival
cycles of the two phases in the momentum distribution func-
tion signaled the high degree of many-body coherence in the
dynamics of these systems �1�.

Theoretically, processes assimilable to quantum quenches
have already been studied a few decades ago in a series of

seminal papers �5�. More recently, however, the experiments
discussed above have inspired an impressive and rapidly
growing activity on this subject �6–10,17�. Apart from the
concrete possibility of testing theoretical results with experi-
ments, the main motivation behind this interest has been the
shift in focus toward a broad class of fundamental issues.
More specifically, a number of recent studies addressed the
extension of the concept of universality to the out of equilib-
rium behavior of quantum critical systems subject to either
quenches at or close to criticality �6� or to linear sweeps of
the control parameter across the quantum critical point �11�.
Similarly, a great deal of activity is devoted to the search for
dynamical manifestations of quantum integrability and to the
study of the relation between nonintegrability and thermali-
zation �7�.

Looking for a simple and fundamental way to characterize
quantum quenches from the point of view of nonequilibrium
physics, it was recently observed that a quantum quench may
be considered in the context of basic statistical mechanics as
a simple thermodynamic transformation �8–10�. It is thus
quite natural to characterize quantum quenches using stan-
dard thermodynamic variables: the work W done on the sys-
tem �8�, the entropy S produced �9�, and the heat Q generated
�10�. Focusing on the work done, the abruptness of the
change in the system parameters in a quantum quench im-
plies that measurements of the work done in different real-
izations of the same protocol, defined as the difference of
internal energies before and after the quench, will necessarily
display fluctuations. This is also the case in classical non-
equilibrium systems �12� and is in evident contrast with
quasistatic/adiabatic processes where the system remains at
all times in the ground state and the work done reduces to the
difference in ground state energies before and after the
quench. Therefore, for a complete characterization of a
quench, it is not enough to specify the average work done on
the system, but it is necessary to specify the full probability
distribution of the work P�W�, which has to satisfy a number
of constraints, such as the Jarzynski equalities and the
Tasaki-Crooks fluctuation theorem �12�. For an abrupt quan-
tum quench, P�W� takes a particularly simple form
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P�W� = �
n

��n���0���2�	W − �En���� − E0����
 , �1�

where �n��� are the eigenstates of energy En���� of the final
Hamiltonian, while �0�� is the ground state of H���. An
equivalent representation is obtained in terms of the charac-
teristic function G�u�=�e−iWuP�W�dW of the distribution
P�W�, which can be easily found to be related to the
Loschmidt echo L�u� �8,13�,

G�u� = �0��eiH���ue−iH����u�0�� = �L�u���. �2�

The Loschmidt echo has emerged previously in the study of
x-ray singularities in metals �14�, dephasing �15�, quantum
chaotic behavior �16�, and upon a Wick rotation is analogous
to a partition function �8�. In addition, its direct computation
for a prototype quantum critical system, the Quantum Ising
chain, revealed that for global quantum quenches of the
transverse field, the presence of criticality leads to singulari-
ties of the moments of P�W� as a function of the quench
parameters, while for local quenches, P�W� itself displays an
edge singularity at low energies �8�.

The goal of the present paper is to move one step forward
toward elucidating and eventually establishing the connec-
tion between the qualitative features of the statistics of the
work P�W� and the generic characteristics of a physical sys-
tem �e.g., its integrability, the presence of a critical point in
parameter space�. In order to do so, it is important to obtain
benchmark results for P�W� in exactly solvable models, un-
derstand their main qualitative features, and describe their
physical origins �8,17�. With this motivation, we study the
statistics of the work done in quantum quenches in the Dicke
model �18,19�, an exactly solvable Hamiltonian describing
an ensemble of two level systems �“atoms”� interacting with
a single bosonic mode �“photons”�. Our motivation to select
this model is mainly its simplicity and integrability. How-
ever, it is important to mention that the Dicke Hamiltonian
was originally proposed to describe the coherent spontaneous
emission of radiation in atomic gases within the dipole ap-
proximation �20�. Most importantly, in the thermodynamic
limit, the Dicke model displays a quantum phase transition
�21� at a critical value of the atom-photon coupling separat-
ing a normal phase characterized by a vanishing number of
excited atoms/photons and a superradiant phase in which the
number of excitations scale extensively with the number of
atoms �19,20�. The Dicke model describes the physics of a
range of physical systems, from molecular magnets �22�, to
Rydberg atoms coupled to cavity radiation �23�. Despite the
fact that the phase transition predicted originally by Hepp
and Lieb �18� has not yet been observed experimentally, a
number of possible realizations of the Dicke model with
critical or close to critical coupling in cavity QED �24� and
circuit QED �25� have been recently proposed.

In the following, we consider quenches of one of the
available knobs in experimental realization of the Dicke
model: the coupling constant. Focusing on quenches within
the normal phase, we show that criticality leaves clear signa-
tures on the dynamics of the system and on P�W�: as the
initial coupling tends to the critical point the average work
done on the system tends to diverge, while for quenches

ending at criticality the probability distribution displays an
interesting sequence of edge singularities. We will give a
simple physical picture explaining this difference, ultimately
related to the difference between the processes of compres-
sion and expansion of a particle subject to a sudden change
in its confining potential. We further elucidate these findings
by computing exactly the time-dependent statistics of ob-
servables such as the quadrature operators of the photon field
and the occupation of the bosonic modes. The rest of the
paper is organized as follows: we present the model, estab-
lish the notations, and discuss the statistics of the work P�W�
in Sec. II. Next, we study the statistics of the observables
starting with the quadratures of the cavity field and followed
by the total occupation of the bosons in Sec. III. Finally, we
give our conclusions in Sec. IV.

II. HAMILTONIAN AND THE STATISTICS OF THE
WORK DONE

The Dicke model �18� describes the coupling of N two
level systems, such as two level atoms, to a single bosonic
mode. Its Hamiltonian is

H = �
i=1

N

�0�i
z + �a†a +

�

�N
�
i=1

N

�a† + a���i
+ + �i

−� , �3�

where the Pauli matrices �i describe the dynamics of the two
level systems with energy splitting ��0, and a�a†� destroys
�creates� a photon of frequency � �we set �=1�. The cou-
pling between atoms and photons has been rescaled by 1 /�N
in order to have a well-defined thermodynamic limit N→
+�. The Dicke model has two phases �18,19�, a normal and
a superradiant one that are separated by a quantum critical
point at �c=��0� /2. The transition as � exceeds �c is char-
acterized by the breaking of parity symmetry leading to the
spontaneous generation of an extensive density of photons in
the system �a†a��N.

The Hamiltonian �3� can be easily diagonalized exactly
�18�. Focusing on the normal phase ����c� in the thermo-
dynamic limit �19�, it is, first of all, convenient to regroup
the Pauli matrices into collective spin operators Jq=�i=1

N �i
q,

where q=z ,	. Using the Holstein-Primakoff representation
in terms of a bosonic mode b, Jz=b†b−N /2, J+=b†�N−b†b,
and J−=�N−b†bb, the semiclassical/thermodynamic limit
N→+� can be taken. One obtains

H = �0�a†a + b†b� + ��a† + a��b† + b� −
N�0

2
. �4�

At this point, the diagonalization proceeds by a standard Bo-
goliubov rotation as outlined in Ref. �19�. The final form of
the Hamiltonian is

H��� = �+c+
†c+ + �−c−

†c− + C . �5�

Here, the eigenenergies �	 are given by

�	��� = �0�1 	
2�

�0
, �6�

while the eigenmodes c	 can be expressed in terms of a and
b as
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c	 = cosh�r	�
a 	 b
�2

+ sinh�r	�
a† 	 b†

�2
, �7�

with tanh�r	�= ��	−�0� / ��	+�0�. Finally, the constant is
C= ��++�−−�0�N+2�� /2. The vanishing of �− at �c
=�0 /2 is a direct consequence of the presence of a quantum
critical point. Though we will not consider the superradiant
phase at length here, we note that for �
�c, a consistent
thermodynamic limit can be taken only after the bosonic
operators a ,b are displaced �19�.

Once the condition of resonance between atoms and pho-
tons is imposed, the only dimensionless parameter determin-
ing the physics is � /�0, which can be practically varied by
either quenching � or the frequency �0. Without loss of gen-
erality, we will consider a quantum quench in which the
coupling constant is changed abruptly from an initial value �
to a final one �� �the discussions of quenches of �0 is analo-
gous�. We will focus on the case where both � ,����c. From
the point of view of the statistics of the work done, quantum
quenches from ���c toward ��
�c �or vice versa� are not
very interesting because the generation of a photon density
�N requires a work that scales extensively with the number
of atoms, while fluctuations are expected to scale like 1 /�N,
i.e., to be highly suppressed in the thermodynamic limit. On
the other hand, we do not expect major changes in the main
qualitative results of this paper for quenches with both
� ,��
�c: the choice of focusing on � ,����c has the only
purpose of allowing us to obtain closed analytic results for
the statistics of the work and of other observables.

Let us start our analysis by computing and characterizing
qualitatively the statistics of the work done in a quantum
quench of the coupling constant from � to ���� ,����c�. As
stated earlier in the introduction, in order to study the prob-
ability distribution P�W� of the work W done in a quantum
quench, it is convenient to compute its characteristic function
G�u�=�e−iWuP�W�dW, given by Eq. �2� where �0�� is now
the vacuum of the operators c	. For � ,����c, the operators
diagonalizing the final Hamiltonian c̄	 are related to the ini-
tial eigenmodes c	 by a Bogoliubov rotation

c̄	 = cosh��	�c	 + sinh��	�c	
† , �8�

with tanh��	�= ��	����−�	���� / ��	����+�	����.
From these definitions, it is evident that we have to com-

pute

G�u� = e−i�Eu�0��e−i��+����c̄+
† c̄++�−����c̄−

† c̄−�u�0�� , �9�

where �E is the difference in the ground state energies of the
initial and final Hamiltonians. In order to do so, one has first
to express �0�� in terms of the vacuum �0��� of the final
eigenmodes c̄	. Using the definition c	�0��=0 together with
the Bogoliubov rotation Eq. �8�, one obtains the equation
cosh��	�c̄	�0��=sinh��	�c̄	

† �0��, which implies that

�0�� = S+��+�S−��−��0��� , �10�

where

S	�z� = e−1/2�zc	
† ����2−z�c	����2�, �11�

are single-mode squeezing operators �26�. The state �0�� is,
therefore, a squeezed vacuum of the modes c̄	. In this rep-
resentation, the Loschmidt echo takes the simple form

G�u� = �0���S+
†��+�S−

†��−�S+��+�u��S−��−�u���0��� , �12�

where �	�u�=�	e−2i�	����u. Using standard formulas for the
overlap of squeezed states, we then obtain

G�u� = e−i�EuG+�u�G−�u� , �13�

where

G	�u� = �1 + n̄	 − e−2i�	����un̄	�−1/2. �14�

Here, we introduced the parameters

n̄	 = sinh2��	� =
��	���� − �	����2

4�	�����	���
, �15�

which physically represent the average occupation of the fi-
nal eigenmodes c̄	 in the initial ground state �0��.

From these equations, one can immediately deduce that
the distribution P�W� has the form

P�W� = �
k,l=0

+�

P+�2k�P−�2l� � ��W − �E − 2k�+����

− 2l�−����� , �16�

where

P	�2k� =
1

�1 + n̄	

k − 1
2

k
�� n̄	

1 + n̄	
�k

. �17�

Qualitatively, the distribution P�W� consists of a series of
principal peaks separated by 2�+����, each followed by a tail
of subpeaks separated by 2�−���� describing excited −
modes �see Fig. 1�.

The partial amplitudes P	 control the weight of each peak
in P�W�. The presence of a quantum critical point and its
effect on P�W� can be elucidated by studying the asymptotic
behavior of P	�k� for large k. Using Stirling’s formula z !
��2zz+1/2e−z we obtain

k − 1
2

k
� =

�2k�!
22k�k!�2 �

1
�k

, �18�

from which, for k�1, one gets

P	�2k� �
1

�1 + n̄	

e−k/�	

�k
, �19�

�	
−1 = log�1 +

1

n̄	
� . �20�

The scale �	 controls the decay of the corresponding ampli-
tude. Notice now that the vanishing of �−�����−����� at the
critical coupling implies the divergence of n̄− when �→�c
���→�c�. Therefore, when �→�c, we have
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�− � n̄− �
�−����
4�−���

�� �c

�c − �
, �21�

and a similar equation with ��↔� for ��→�c. The presence
of a quantum phase transition in parameter space is marked
by the divergence of the scale controlling the exponential
decay of the partial amplitude associated with the � modes,
which are the ones becoming critical at the transition.

Despite the fact that for both quantum quenches toward
the quantum critical point and away from the quantum criti-
cal point �− diverges, the physics behind these two situations
is deeply different. While the divergence of �− when either �
or �� is exactly at the quantum critical point always results in
a power law decay with power �=−1 /2 of the partial ampli-
tude P− �cf. Equation �19��, this has different effects on the
physics of P�W� depending on the type of quench consid-
ered. Indeed, when �→�c, the spacing �−���� between the
secondary peaks associated to each principal peak remains
finite. As a result, the slow decay of their amplitudes leads to
the divergence �in the thermodynamic limit� of the average
work �and of higher moments�. On the other hand, the limit
��→�c is more subtle: in this case, the spacing �−���� van-
ishes and the secondary peaks merge to give rise to power
law edge singularities at each principal peak �see Fig. 2�.
Notice, however, that in this case, the decay of each tail at
high energies is exponential, implying that the moments of
the distribution remain finite �see Eq. �30� below�.

These two cases can be efficiently distinguished by con-
sidering the limiting behavior of the energy scale �−
=2�−�−���� controlling the decay of the tails of P�W�. When
the quench is toward criticality ���→�c�, this scale remains
finite

�− �
�−���

4
. �22�

On the other hand, for quenches starting infinitesimally close
to criticality ��→�c�, it diverges

�− �
��−�����2

4�−���
�

�c

�c − �
. �23�

Let us now explore in more detail the difference between
quenches toward criticality and away from it giving a simple
physical picture to explain their physics. For quenches start-
ing at criticality ��→�c�, the divergence of �− implies the
divergence of the average work done on the system. Physi-
cally, this can be understood resorting to the coordinate rep-
resentation of the Hamiltonian representing the � mode,

H−��� = �−���c−
†c− �

p−
2

2
+ �−����2x−

2

2
+ const. �24�

In this representation we see that when a quench starts ex-
actly at criticality the � mode corresponds to a completely
delocalized free particle. A quench to ����c can be under-
stood as the switching on of an harmonic potential tending to
confine the mode in a finite volume. This process is concep-
tually similar to the compression of a gas occupying initially
an infinite volume into a finite one: on this basis, we expect
the average work done to diverge as �→�c. This can be
readily obtained from our formulas using the characteristic
function G�t� to extract directly the cumulants Kn of the dis-
tribution P�W� using the standard cumulant expansion G�u�
=exp��n=1

� �−iu�n /n !Kn�. Expanding Eq. �14� to first order,
we obtain

�W� = K1 = �E + �+����n̄+ + �−����n̄−. �25�

The average excess work ��W�= �W�−�E is then

FIG. 1. �Color online� A typical plot of the probability distribu-
tion of the work P�W� for a quench from �=0 to ��=0.499�0. The
delta function peaks have been Lorentz-broadened for clarity and
work is measured in units of �0. Two principal peaks at W−�E
=0, corresponding to k=0 in Eq. �16�, and W−�E=2�+����
=2.82�0, corresponding to k=1, are clearly visible. Each principal
peak is then followed by a tail of secondary peaks separated by
2�−����=0.09. When ��=�c, the distance between these subpeaks
vanishes, leading to their merging which gives rise to an edge sin-
gularity at each principal peak �see Fig. 2�.

FIG. 2. �Color online� The probability distribution of the work
P�W� for a quench from �=0.1�0 to ��=�c=�0 /2. Here, work is
measured in units of �0. A sequence of edge singularities described
by Eqs. �30� and �31� originating from the merging of the satellite
peaks at �−���� and located at W−�E=�8�0k, with integer k, sig-
nals the criticality of the system in the final state.
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��W� =
��+���� − �+����2

4�+���
+

��−���� − �−����2

4�−���
. �26�

From this expression, it is evident that quantum quenches are
not reversible processes, W��→����−W���→��, and that
for �→�c, one has

��W� �
��−�����2

�2�0

1
�� − �c

, �27�

which diverges at criticality as anticipated. A similar diver-
gence is observed in the second moment of P�W�, which can
be easily computed to find

���W�2� = 2��+�����2n̄+�1 + n̄+� + 2��−�����2n̄−�1 + n̄−� .

�28�

A diametrically opposite situation is obtained for quenches
starting with ���c and ending exactly at criticality. In this
case, the corresponding confining harmonic potential in the
coordinate representation of the initial Hamiltonian �24� as-
sociated with the mode �−����0 is removed after the quan-
tum quench. This process is conceptually similar to the free
expansion of a gas in vacuum and is, therefore, not expected
to be characterized by a divergence of the average work.
However, it turns out that the resulting distribution P�W�
displays a series of edge singularities resulting from the fact
that �− stays finite even in the limit ��→�c �see Eq. �22��.
The most elegant way to obtain this result is by observing
that for u�1 /�−����, we can always approximate

G−�u� � �1 + i�−u�−1/2, �29�

whose Fourier transform is

P−�w� =
��w�

�w�−

e−w/�−. �30�

Using these expressions for ��=�c, one immediately obtains

P�W� = �
k=0

+�

P+�2k�P−�W − �E − �8�0k� , �31�

which has the expected form �see Fig. 2�. It is interesting to
notice that edge singularities in the statistics of the work
have been previously reported in local quenches of the trans-
verse field in a Quantum Ising chain �8�. These two examples
seem to suggest a connection between criticality and edge
singularities in the statistics of the work done in quantum
quenches, a topic that deserves a deeper study in the future.

III. STATISTICS OF OTHER OBSERVABLES

Let us now continue the characterization of quantum
quenches in the Dicke model by focusing on the statistics of
observables such as the quadrature operators and the occu-
pation of the bosonic modes. In contrast with the statistics of
the work, which is time-independent, the statistics of generic
observables depends on the time t elapsed after the quench.

More explicitly, let us consider a generic observable Q̂ hav-
ing eigenstates �n� with corresponding eigenvalues qn. If the

initial state before the quench is ��0�, the probability to ob-

tain q as a result of the measurement of Q̂ at time t is

P�q,t� = �
n

��n�e−iHft��0��2��q − qn� , �32�

where Hf is the final Hamiltonian. Hence, the characteristic
function GQ�u , t�=�e−iquP�q , t�dq of the distribution P�q , t�
is given by the expression

GQ�u,t� = ��0�e−iQ̂�t�u��0� , �33�

where Q̂�t�=eiHftQ̂e−iHft.
Let us now compute explicitly this characteristic function

for two important observables for the Dicke model: the
quadratures given by

X��� =
1
�2

�ae−i� + a†ei�� , �34�

and the total occupation of the bosonic modes

N = a†a + b†b , �35�

which can be interpreted as the order parameter of the tran-
sition.

A. Quadrature operators

Let us start by computing the statistics of the quadrature
operator X��� for a generic quench starting at � and ending
at �� with � ,����c. The appropriate characteristic function
is

G��u,t� = �0��eiH����te−iX���ue−iH����t�0�� . �36�

Since the final Hamiltonian is diagonalized by the modes c̄	,
it is convenient to first express the operator X��� in Eq. �34�
in terms of them. Inverting a transformation analogous to Eq.
�7� �with �→��� yields

a =
1
�2

�cosh�r̄+�c̄+ + cosh�r̄−�c̄− − sinh�r̄+�c̄+
† − sinh�r̄−�c̄−

†� ,

�37�

where the bars mean that the corresponding quantities are to
be evaluated using the final value of the coupling parameter
��. Since the c̄	 operators evolve trivially in time according
to the final Hamiltonian, we find that the characteristic func-
tion has the simple expression

G��u,t� = �0��e−iX+��,t�ue−iX−��,t�u�0�� , �38�

where

X	��,t� =
A	���

2
e−i�	����tc̄	 +

A	
� ���
2

ei�	����tc̄	
† , �39�

with

A	��� = �e−i� cosh�r̄	� − ei� sinh�r̄	�� . �40�

The next step in obtaining a closed form result consists of
expressing the state �0�� in terms of the vacuum of the op-
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erators c̄	. Using the result of the previous section �Eq.
�10��, we obtain

G��u,t� = �0���e
−iX̃+��,t�ue−iX̃−��,t�u�0��� , �41�

where X̃�� , t�=S†��	�X	�� , t�S��	�. Finally, using the for-
mula S†���cS���=cosh���c+sinh���c†, we obtain

G��u,t� = �e�+uc̄+−�+
�uc̄+

†
e�−uc̄−−�−

�uc̄−
†
� , �42�

with

�	��� = −
i

2
�A	���e−i�	t sinh��	� + A	

� ���ei�	t cosh��	�� .

�43�

Since the exponentials appearing in the expression Eq. �13�
for the characteristic function are standard displacement op-
erators, taking their vacuum expectation value gives �26�

G��u,t� = e−u2/2���+��, t��2+��−��, t��2�. �44�

The statistics of the quadrature operators maintains the char-
acteristics it has in the initial state and is always Gaussian.
The only scale characterizing the distribution is its variance,
which is given by

��X���2� = ��+��,t��2 + ��−��,t��2. �45�

Using this expression, we may get further insight on the
difference between quenches that are driven toward critical-
ity and those that start near criticality and then are driven
away from it. Indeed, focusing on the case �=0 that corre-
sponds to the “coordinate” operator X��=0�, we have

��	�0,t��2 = �0� cos��	����t�2

4�	���
+

�	���sin��	����t�2

4��	�����2 � .

�46�

Notice now that in the case in which the initial state is close
to critical, the closer � is to �c, the more delocalized the
mode c̄− is, initially. This results in the divergence of the
amplitude of the oscillations of ��X���2� as 1 /��c−� when
�→�c. On the other hand, when the final coupling constant
�� approaches criticality, one is describing the physics of an
initially confined mode c̄− that is “released” at t=0: it is,
therefore, not surprising that for large times t the width of the
distribution increases linearly with time when ��=�c, that is,

���X���2� �
��0�−���

2
t . �47�

B. Occupation number

The statistics of the total occupation of the bosonic modes

N = a†a + b†b , �48�

turns out to encode similar information. Let us compute the
associated characteristic function

GN�u� = �0��eiH����te−iNue−iH����t�0�� . �49�

First of all, we express the operator N in terms of the modes
diagonalizing H����. Using Eq. �7�, we obtain N=N++N−,
where

N	 = cosh2�r̄	�c̄	
† c̄	 + sinh2�r̄	�c̄	c̄	

† − sinh�r̄	�cosh�r̄	�

�	��c̄	
† �2 + �c̄	�2�
 . �50�

Evolving this operator in time and expressing the initial state
�0�� in terms of the vacuum �0��� of the operators c̄	 as in
Eq. �10�, we obtain GN�u�=GN+

�u�GN−
�u�, where

GN	
�u� = eiu/2�exp��

j=1

3

� j� 	 �Kj� 	 ��� . �51�

Here,

K1� 	 � = K2
†� 	 � =

�c̄	
† �2

2
, �52�

K3� 	 � =
c̄	

† c̄	 + c̄	c̄	
†

2
, �53�

and

�1� 	 � = �2� 	 �� = − iu	cosh�2r̄	�sinh�2�	�

− sinh�2r̄	�cosh�2�	�cos�2�	����t�

− sinh�2r̄	�sin�2�	����t�
 , �54�

�3� 	 � = − 2iu	cosh�2r̄	�cosh�2�	�

− sinh�2r̄	�sinh�2�	�cos�2�	����t�
 . �55�

In order to compute the matrix elements in Eq. �51�, we
notice that for both + and − modes, the operators Kj form a
closed algebra with commutation relations �K1 ,K2�=−2K3,
�K1 ,K3�=−K1, and �K2 ,K3�=K2. We may then apply a stan-
dard operator ordering theorem �26� stating that for this al-
gebra of operators, the equality

e�j=1
3 �jKj = e�1K1eln��3�K3e�2K2, �56�

holds, where

�1,2 =
2�1,2 sinh���

2� cosh��� − �3 sinh���
, �57�

�3 =
1

�cosh��� −
�3

2�
sinh����2 , �58�

with �2=�3
2 /3−�1�2. Using Eq. �56� together with Eq. �52�,

we easily obtain

�exp��
j=1

3

� j� 	 �Kj� 	 ��� = ��3� 	 ��1/4. �59�

Some straightforward algebra now shows that in the present
case �2=−u2, and hence a direct computation of �3 leads us
to
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GN	
�u� =

eiu/2

�cos�u� + ig	�t�sin�u�
, �60�

where

g	�t� =
1

2
� �	����2

�0�	���
+

�0�	��0�
�	����2 �sin2��	����t�

+
1

2
��	���

�0
+

�0

�	����cos2��	����t� . �61�

The only parameters entering the characteristic function are
g	�t��g	�1�. Physically, they characterize the average oc-
cupation of the bosonic modes. Indeed, taking the first loga-
rithmic derivative of the characteristic function leads to

�N� =
g+�t� + g−�t�

2
− 1. �62�

As for the average work and the quadrature variance
��X���2�, the behavior of the occupation for quenches start-
ing close to criticality and going toward criticality is deeply
different. When ��→�c, we indeed have that for large times

�N� �
�0�−���

2
t2, �63�

while in the second case ��→�c�, the amplitude of the os-
cillations diverges as ��c / ��c−��.

Finally, we give the result for the full distribution of the
occupation number N. By taking the Fourier transform of Eq.
�60�, one may easily obtain

P�N� = �
M=0

+�

N�M���N − 2M� , �64�

where the weights N�M� are given by the finite sums

N�M� =� 4

�1 + g+��1 + g−��k=0

M �k −
1

2

k
��M − k −

1

2

M − k
�

� g+ − 1

g+ + 1
�2kg−1 − 1

g− + 1
�2�M−k�

. �65�

IV. CONCLUSIONS

In this paper, we studied the statistics of the work and
other observables for quantum quenches of a prototypical
quantum critical system, the Dicke model. Focusing on
quenches of the coupling constant from an initial value � to
a final one �� in the normal phase �� ,����c�, we computed
exactly the characteristic function of the probability distribu-
tion of the work, as well as that associated with the statistics
of the quadratures of the cavity modes and with the total
occupation of the bosonic modes. We found that while criti-
cality always leaves an imprint on the statistics of observ-
ables, there is a deep difference between quenches starting
close to the critical point and those ending close to it. In the
first case, the average work �as well as the amplitude of the
oscillations of the variance of the quadratures and of the
average occupation� diverges as criticality is approached. In
contrast, for quenches toward the quantum critical point the
moments of the distribution of the work stay finite, while the
distribution itself displays a sequence of edge singularities.
This occurrence is accompanied by a characteristic quadratic
growth in time of the variance of the “coordinate” operator
associated with the cavity field, and a similar quadratic tem-
poral growth of the average number of bosonic modes in the
system. We developed a simple physical picture explaining
the origin of these effects: for quenches starting close to
criticality, the divergences are caused by a mode initially
delocalized in phase space subject to a final confining poten-
tial that tends to compress it in a finite volume. The situation
is opposite for quenches toward criticality: the initially local-
ized mode is released at t=0 and is allowed to spread coher-
ently in phase space. On the basis of this general qualitative
picture, we expect our main qualitative findings listed above
to apply also for � ,��
�c.

ACKNOWLEDGMENTS

This work is partly based on the Diploma Thesis of F.P.
that was submitted to the Abdus Salam ICTP. F.P. is grateful
for the hospitality extended to him by the University of the
Philippines. A.S. would like to thank A. Polkovnikov and E.
Altman for useful discussions on this and closely related
subjects.

�1� M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Nature �London� 415, 39 �2002�; M. Greiner, O. Man-
del, T. W. Hänsch, and I. Bloch, ibid. 419, 51 �2002�.

�2� T. Kinoshita, T. Wenger, and D. S. Weiss, Nature �London�
440, 900 �2006�.

�3� L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and
D. M. Stamper-Kurn, Nature �London� 443, 312 �2006�.

�4� I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,
885 �2008�.

�5� P. Mazur, Physica �Amsterdam� 43, 533 �1969�; E. Barouch
and M. Dresden, Phys. Rev. Lett. 23, 114 �1969�; E. Barouch,
B. M. McCoy, and M. Dresden, Phys. Rev. A 2, 1075 �1970�;

E. Barouch and B. M. McCoy, ibid. 3, 786 �1971�; 3, 2137
�1971�; M. D. Girardeau, Phys. Lett. 30A, 442 �1969�; 32A,
67 �1970�.

�6� F. Iglói and H. Rieger, Phys. Rev. Lett. 85, 3233 �2000�; E.
Altman and A. Auerbach, ibid. 89, 250404 �2002�; K. Sen-
gupta, S. Powell, and S. Sachdev, Phys. Rev. A 69, 053616
�2004�; P. Calabrese and J. Cardy,Phys. Rev. Lett. 96, 136801
�2006�; J. Stat. Mech.: Theory Exp. 2007, P10004 �2007�; G.
De Chiara, S. Montangero, P. Calabrese, and R. Fazio, ibid.
2006, P03001; T. Platini and D. Karevski, J. Phys. A 40, 1711
�2007�; S. Montangero, R. Fazio, P. Zoller, and G. Pupillo,
Phys. Rev. A 79, 041602�R� �2009�; P. Brametteler, M. Punk,

QUANTUM QUENCHES IN THE DICKE MODEL:… PHYSICAL REVIEW E 80, 061130 �2009�

061130-7



V. Gritsev, E. Demler, and E. Altman, Phys. Rev. Lett. 102,
130603 �2009�.

�7� M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev.
Lett. 98, 050405 �2007�; C. Kollath, A. M. Läuchli, and E.
Altman, ibid. 98, 180601 �2007�; S. R. Manmana, S. Wessel,
R. M. Noack, and A. Muramatsu, ibid. 98, 210405 �2007�; M.
Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, ibid. 100,
030602 �2008�; T. Barthel and U. Schollwock, ibid. 100,
100601 �2008�; M. Eckstein and M. Kollar, ibid. 100, 120404
�2008�; M. A. Cazalilla, ibid. 97, 156403 �2006�; D. M. Gan-
gardt and M. Pustilnik, Phys. Rev. A 77, 041604�R� �2008�; D.
Rossini, A. Silva, G. Mussardo, and G. Santoro, Phys. Rev.
Lett. 102, 127204 �2009�.

�8� A. Silva, Phys. Rev. Lett. 101, 120603 �2008�.
�9� A. Polkovnikov, e-print arXiv:0806.2862.

�10� A. Polkovnikov, Phys. Rev. Lett. 101, 220402 �2008�.
�11� W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95,

105701 �2005�; A. Polkovnikov, Phys. Rev. B 72, 161201�R�
�2005�; A. Polkovnikov and V. Gritsev, Nat. Phys. 4, 477
�2008�.

�12� C. Jarzynski, Phys. Rev. Lett. 78, 2690 �1997�; G. E. Crooks,
Phys. Rev. E 60, 2721 �1999�; H. Tasaki, e-print arXiv:cond-
mat/0009244v2

�13� P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75,
050102�R� �2007�; P. Talkner and P. Hänggi, J. Phys. A 40,
F569 �2007�; P. Talkner, P. Hänggi, and M. Morillo, Phys. Rev.
E 77, 051131 �2008�.

�14� K. D. Schotte and U. Schotte, Phys. Rev. 182, 479 �1969�.
�15� Z. P. Karkuszewski, C. Jarzynski, and W. H. Zurek, Phys. Rev.

Lett. 89, 170405 �2002�.
�16� A. Peres, Phys. Rev. A 30, 1610 �1984�; R. A. Jalabert and H.

M. Pastawski, Phys. Rev. Lett. 86, 2490 �2001�
�17� G. Roux, Phys. Rev. A 79, 021608�R� �2009�; A. Faribault, P.

Calabrese, and J. Caux, J. Stat. Mech.: Theory Exp. 2009,
P03018 �2009�.

�18� R. H. Dicke, Phys. Rev. 93, 99 �1954�; K. Hepp and E. H.
Lieb, Ann. Phys. �N.Y.� 76, 360 �1973�.

�19� C. Emary and T. Brandes, Phys. Rev. E 67, 066203 �2003�.
�20� A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inski�, Coopera-

tive Effects in Optics �Institute of Physics Publishing, Bristol,
1993�.

�21� S. Sachdev, Quantum Phase Transitions �Cambridge Univer-
sity Press, Cambridge, England, 1999�.

�22� E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 89,
157201 �2002�.

�23� J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys.
73, 565 �2001�.

�24� F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael,
Phys. Rev. A 75, 013804 �2007�.

�25� G. Chen, Z. Chen, and J. Liang, Phys. Rev. A 76, 055803
�2007�.

�26� S. M. Barnett and P. M. Redmore, Methods in Theoretical
Quantum Optics �Oxford Clarendon Press, Oxford, 1997�.

FRANCIS N. C. PARAAN AND ALESSANDRO SILVA PHYSICAL REVIEW E 80, 061130 �2009�

061130-8


